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Abstract. We investigate a class of contractions of the anti-de Sitter superalgefdra ity and

(3 + 1) space-time dimensions giving rise to the kinematical Pomnead Galilei superalgebras.

We also present faithful finite-dimensional matrix representations that are suitable for contraction
in different ways.

1. Introduction

Since their introduction in 1953 [1], contraction procedures have been applied to relate Lie
groups and homogeneous spaces corresponding to the various relativistic theories such as,
for instance, de Sitter, Poind&or Galilei [2]. The same formalism can be applied, with
slight modifications, to many other algebraic structures such as superalgebras [3] and quantum
algebras [4]. In this work we wish to use contraction methods in two respects: (i) to connect
the superalgebras corresponding to the above-mentioned kinematical Lie algebras, and (ii) to
define the contraction of a class of faithful matrix representations that are the most suitable to
define the matrix supergroups or wave equations.

We start by paying attention to the anti-de Sitter (AdS) superalgebras corresponding to
(1 +1 and (3 + 1) space-time dimensions. Extended supergravity theories, Kaluza—Klein
supergravity and general supersymmetric field theories of the Wess—Zumino type [5] can be
setup inan AdS space. However, where the AdS space is most suitable is in the formulation of
massless higher-spin field theories [6] that do not admit a flat space. Two-dimensional gravity
models such as that of Jackiw—Teitelboim [7, 8] and dilatonic gravity have recently attracted
much attention [9] since they include many interesting properties (black holes, etc) avoiding
the complexity of more dimensions. These models also use an extéhdei)-Poincaé
superalgebra that can be obtained fron{a 1)-AdS superalgebra [10].

Even algebraically1 + 1)- and(3 + 1)-dimensional AdS superalgebras are interesting on
their own. They share the property that the even sectors are isomorphi{@td) andso(3, 2),
respectively, a coincidence that does not occur in other dimensions. This allows us to realize,
in a minimal way, these superalgebras as the orthosymplecticoopét/2) andosp(1/4),
respectively. On the other hand, the dimension is more crucial in the frame of superalgebras
than Lie algebras, particularly in the study of their contractions, due to the reality conditions.
Therefore, besides the clarifying role of ttfle+ 1)-dimensional case as a basic introduction,
it contains many special features not found(®+ 1) dimensions. Notice that il + 1)
dimensions the de Sitter and the anti-de Sitter superalgebras are both isomorphic, although
their geometric and physical properties are quite different. Howevé3 +#ri) dimensions the
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corresponding de Sitter algebras are no longer isomorphic, éhed)-deSitter~ so(4, 1)
and(3 + 1)-AdS ~ s0(3, 2), but only the latter allows a Majorana representation.

This paper is organized as follows. In section 2 we write down the AdS superalgebras
in (1 +1) and (3 + 1) dimensions in terms odsp(1/2) andosp(1/4), respectively. We
study some of the finite-dimensional irreducible representations of these superalgebras in
section 3. An interesting result is the identification of these irreducible representations as
nontrivial matrix subsuperalgebras afp(j/2k) with j,k € Z*. Moreover, we present a
covariant realization, in terms of gamma matrices of a particular, but physically interesting,
representation of each superalgebra. In sections 4 and 5 we develop the contraction process of
these superalgebras and their representations in order to obtain, first the @airtaecondly
the Galilei superalgebras. In each case we discuss the problem of implementing an involution
of the corresponding superalgebra that gives rise to the relevant grading. As a general result,
we obtain a class of kinematical superalgebras from the AdS superalgebra by means of what we
call ‘'standard contractions’. This result generalizes to the superalgebra case, the well known
one that the kinematical algebras (also called inhomogeneous algebras) can be considered as
contractions of a simple pseudo-orthogonal algebra (such as it is the case of AdS) [2,11,12].
Some remarks and conclusions end the paper.

2. AdS superalgebras

2.1. (1+1)-AdS superalgebra

Let us consider the Cartan ba$isy, K.+; Q.} of the superalgebrasp(1/2), whereKg, K+
are the generators of the even componei®, R) ~ so(2, 1), and Q. are the supercharges
in the odd sector. The commutation rules are

[Ko, K+] = K4 [K+, K] = —2Ko

[Ko, Q4] =£30+  [Ki,Q:] =0  [Ki, O5] = FO« (2.1)

{Q‘h Q—} = KO? {Q:l:r Q:t} = K:t-
The Casimir operator afsp(1/2) is given by

C=K§—(KiK_+K_K:) +3(0-Qs — 0:+0-)

=Co+3(0:0_-—0_0,) =A*—A)2 (2.2)

whereC, is the Casimir of the even patt (2, 1), andA = Q.0 — Q_ Q. isan antisymmetric
supercharge operator.

The underlying vector space ofp(1/2) can be decomposed into a direct sum of three
superspaces

osp(%) =n"@Ohdn" (2.3)
each of them being a subsuperalgebra, such that
[h,n%] c n* (2.4)

whereh = (Kj) is the Cartan subalgebra, and = (K., Q) are nilpotent superalgebras.

Finally, letV = Vy @ V3 be the complex representation space for a finite-dimensional
representation afsp(1/2), equipped with the natur&, grading, i.e. 0 for the even and 1 for
the odd vectors. According to [13] an inner product) can be defined iv by

(ulv) = (uolvo)o + (u1lvi)a u,vev (2.5)

where(-, -)o and(, -); are Hermitian and antiHermitian inner product3gf V1, respectively,
while u = ug + u1, v = vo + vy, With ug, vo € Vo, u1, v1 € V1. The superHermiticity of the
operators acting o follows directly from (2.5).
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2.2. (3+1)-AdS superalgebra
The Cartan—Weyl basis faexp(1/4) can be written in the form

{Hla H27 Eia Ea (l - 17 ) 4); Q++7 Q+—7 Q—"’v Q——}
where{Hy, Hy, E;, F;, (i =1, ..., 4)}isthe Cartan—Weyl basis of the Lie algebpd4, R) ~
so(3, 2), that spans the even sector, .., O+, Q_+, Q__} is the set of the supercharges
that generate the odd sector. This is a rank-two superalgebra whose Cartan subalgebra is
h = (Hi, H,). According to our convention the commutators are expressed in the following
way (the vectoil stands for the paitH1, H») andE;, E;, are associated to the positive simple
roots ofso(3, 2), and similarlyFy, F» correspond to the negative roots):
[Hs El] = (17 _1)E1 [Hv EZ] = (07 1)E2
[H7 Fl]:(_lvl)Fl [H, FZ]:(OV_]-)FZ
[E1, E2] = E3 [E2, E3] = E4 [F1, F2] = —F3 [F2, F3] = —F}4
[E1, F1] = H1 — Ha [E1, F2] =0 [E2, 1] =0 [E2, F2] = H>
[H, Q] = (.20  [H, Qs]=(G, —3)0+
[H,0 +]=(-3 30+ [H,Q__]=(-3-$0_ (2.6)
{Q++, Q4s} = —2E4 {Q++, 04—} = \/EEB
Q. 04} = —V2E; {0+, 0+ ) =2E;
(0,0 }=2F {0, 0.+}=v2F;
0.0+ }=V2F  {Q.+.04}=-2F
{Q++, 0} = —(H1+ Hp) {Q+-, O—+} = H1 — Ha.

The vector space afsp(1/4), like osp(1/2), can be expressed as the direct sum
osp(%) =n ®hodn" (2.7)

with the Cartan subalgebva and the positive and negative root nilpotent subsuperalgebras
n" = (Qs, Que, {Ei}} ) andn™ = (Q_., O__, {F},), respectively. Quadratic and
quartic Casimir operators similar to (2.2) can be given following the construction of Arnaudon
et al[14].

3. Representations of AdS superalgebras

3.1. Irreducible finite-dimensional representations of 4y

Let D/ denote thg2; + 1)-dimensional (2 + 1)D) representation afo(2, 1), where; is a
positive integer or half-integer. The common eigenvectors of the CaSjnaind K, denoted
by |(j)m), m € {—j,—j+1,...,j— 1, j}, will be assigned to the even subspagge for
example. ThigD/ representation is given by

Kol(j)m) = m|(j)m)

K_|(ym) =/ (j +m)(j —m+D|(j)m — 1) (3.1)

K (ym) = =/ (j —m)(j +m + D|(j)m + 1)

and

Cel(jym) = j(j + DI(j)m). (3.2)

Note that the generatdt, is noncompact and, when the contraction to ¢the- 1)-Poincae
algebra is performed, it is identified with the boost generator.
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As the supercharge8.. support theD¥? representation, the vectogs. |(j)m) belong to
the tensor producd’ @DY? ~ D/*Y2 @ Di=Y2_ In fact, they generate the carrier subspace
corresponding t®/~%/? because the vectdf) j) is assumed to be the highest weight for the
whole superalgebra, i.e. it is annihilated by both generators pthus avoiding the; + 1/2)
subspace. Therefore, the representation space for the whole superalgebra is generated by the
vectors

(K" (D) (K" Q-1()J) neZz. (3.3)
Now, from the commutation rules (2.1) one can check t@at(j)j) o [(j)j"), with
j' = j—1/2. So, the vector&K,)"|(j') — j') give rise to theD/~Y? irreducible representation
of so(2, 1) corresponding to the odd sectgr. The explicit representation of the supercharges
Q- that can be obtained, up to a global phase factor, from the commutation rulgs(df 2)
is
Q+l(ym) = =(1/V2)\/j = m|(jym +3)
0+1(jym'y = (/N2 +m + 1| (j)m' +3)
Q- 1()ym) = (/Y2 j+m|(jym = 3)
Q_1(j"m'y = (1/N2)y/j = m + L(jym' — %)

wherej’ = j — 1/2. A more compact expression of (3.4) can be given in terms of Clebsch—
Gordan coefficients.

Summarizing, we have constructed a firdg + 1)D representation afsp(1/2), denoted
by 77, which corresponds to the Casimir eigenvalue j(j + 1/2). Hereafter, we adopt the
following convention: ifj (j) belongs toZ*, the states(j)m) (|(j")m’)) will generateVy
while those corresponding to the half-odd positive integées j — 1/2 (j = j' + 1/2) will
spanV. In this wayV; will always be considered as an even-dimensional space.

The matrices7/(X) for X € osp(1/2) are easily constructed from (3.1) and (3.4).
Restricting ourselves to the cagec Z* (the other possibility gives analogous results) we
define the metri&; by

K, =G, &J (3.5)

(3.4)

where

(_1)2j+1 (_1)2j’+1
G,:( ) J,:( ) @)
(=D Y

The matrixG; corresponds to a pseudo-orthogonal metric with signatgrel, j) and J;
determines a symplectic metric of dimension Zhis means thak; gives the metric for the
matrix superalgebrasp(j + 1, j/2j):

(ulv) = u'K;v u,ve RV (3.7)
Now we can state the following theorem.

Theorem 3.1. The irreducible representatiofi’ of osp(1/2) constitutes a nontrivial matrix
subsuperalgebra obsp(j + 1, j/2j), i.e. if X € osp(1/2) and 7/(X) stands for its
representative matrix defined through (3.1)—(3.4), then

T/(X)K; + (-D)*PK;7/(X) =0 (3.8)

whereK; is given by (3.5) and (3.6%(X) is the grade ofX, and the index, st, means
supertranspose.
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The proof is a simple matter of checking expression (3.8) with the matfi¢ex) for all
X € osp(1/2). The operators of this representation with respect to the product (3.7) are then
superantiHermitian ones, i.&" = —(=1)¢® X.

In our notation, the fundamental matrix representationspi(1/2) is 7%2. However, the
5D representatiod ™ will be more suitable for our purposes. Indeed, the 3D even subspace
Vo of T supports the natural representationsat2, 1), so we can use this ‘ambient space’
to describe the physical space-time eventssatd, 1) can be identified with thél + 1)-AdS
algebra. The odd sector supports the spinorial representatiaifl). Therefore, by using
this representation we are carrying, at the same time, the kinematical algebra and its fermionic
description by means of the symplectic representation. According to this interprettion,
will be called the ‘natural’ representation of tlig + 1)-AdS superalgebra. A basis of the
carrier space of 71 made up ofC,, K }-eigenstates is

{1D1), [(DO), (D) — 1), 133, 1(3) — )

so that the first three vectors generalg while the last ones);. In this basis, the
matrix representation afsp(1/2) is immediately computed from (3.1) and (3.4) and, from
theorem 3.1, gives a nontrivial subsuperalgebraspi(2, 1/2).

Having in mind the kinematical interpretation @f(2, 1) on 1y, we shall diagonalize the
so(2, 1) metric matrixG of (3.6) to get

G =diagl, -1, 1) = (g.) w,v=20,1,2, (3.9
which gives a new metriK for osp(2, 1/2) in the form
1 0 0 x =«
0 -1 0 % =%
K=]0 0 1 x =« (3.10)
* x *x 0 1
* *x *x —1 0

The symbolx stands for zero entries and is used in order to emphasize the box structure of
the matrices. Next, we introduce a more geometric basisdf@®;, 1) with the new generators
K, =—K,, (u,v=0,1,2) defined through
KO = Kol K+ = —K21 — Kzo K_ = K21 — Kzo. (311)
The action of the generatdk,, on the space/, endowed with the metric (3.9) can be

understood geometrically as a pseudo-rotation indiv@lane. In this new basis, thep(1/2)
commutation rules (2.1) read

[K;wv Kpa] = gp.pKvo - g;vap + gvaKp.p - gvpK/w
[Ko1, Q1] = +30. [K20, 01] = F30+ [K21, 04+] = 30+ (3.12)
{0+, 0} =Ko {0_,0_} =Ky — Ky {0+, O+} = —K21 — K2o.

For the corresponding matrix representatiorfofwe use the notation

(M, 0 (0 B, B
(M 2) e=(SB) e-: em

whereM,,, stands for the 83 vector representation ©6(2, 1) acting ony, while S,,, denotes
the 2<2 spinorial representation an. The matrix elements af/,, can be given explicitly
with the help of the metric tensa,, (3.9) as

(Mpa)ﬂv = _gggav +gggp\)- (314)
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The remaining submatrice,,, B, andC, can be written with the help of-matrices.
Indeed, let us consider the de4,, © = 0, 1, 2}, associated with thél + 1)-AdS space-time
characterized by

Vs ml = 280 (3.15)
A simple choice in terms of the Pauli matrices,{ = 1, 2, 3) is

Yo =01 y1=lo2 Y2 = —03. (3.16)
There exists also a ‘charge conjugation’ matfixsatisfying

C=-C ctc=cct=1 Cy.Ct=—y, (3.17)

where the symbal stands for the matrix transposition. For thegiven by (3.16), we can
chooseC = yy, and the matrix s€fC, y,.; 1 = 0, 1, 2} constitutes a Majorana representation
with real matrices.

Thus, the matrixs,,, in (3.13) is, as usual, given by

S,uv = _Sup. = _%yﬂyv n 7& v (318)
while the matrix components of the odd generai@ysin (3.13) take the form
1 1
B = —=(Cy")ac Codew = —=Fa)ac 0.f=012 ac==+ (319
(Ba) ﬁ( YY) (Ca) ﬁ(y ) B ( )

The commutation rules (3.12) fesp(1/2) can be rewritten in terms of thegematrices.
In addition to the unchanged even commutators, we now have

(Ko, Q] = Qb (— 3V ¥o)ba {Qa, Ob} = (—3Cy"y")apKw  (3.20)
with u,v=0,1,2,anda, b = +, —.

3.2. Irreducible finite-dimensional osh(4) representations

First, let us recall that the even subspacesgf(1/4) is the Lie algebrao(3, 2) whose roots are
{£e1, +ep, +e1t ey}, Whereey, e, are the canonical cartesian vectorgifi(the Cartan basis
elementsH; and H, are set at the origin). The simple roots age= (1, —1) anda, = (0, 1),
and the associated fundamental weights= (1, 0) andx, = (%, %) span the 5D and 4D
fundamental representations, respectively.

Two interesting realizations of these fundamental 4D and 5D representations are given
by the charge$Q.+, Q+—, O_+, O__}, and the antisymmetric products of charges generated
by Q+sQ+- — Q+-Q+r = Q4+ A Q4_, respectively. To show the statement for the latter
case, let us first note that the quadratic products of supercharges belong to the tensor product
(0,1)®(0,1) = (0, 2)®(1, 0)d(0, 0). In fact, Q.+ A Q+_ is the highest weight of the (1,0)
component:

[H, Q++/\Q+_] = (1, O)Q++/\Q+_ [Eiv Q++/\Q+_] == 0 l = l, 2, ey 4

The whole support space, that can be obtained by adding the antisymmetric products resulting
from the commutatorfX, Q.+ A Q+_], whereX € so(3, 2), is

(O Qs QiANQ 4, Q4+ NQ v+ Q1+ NQ ., Q4NQ -, Q+-NQ__). (3.21)

The remainingQ+-AQ_+ — Q++AQ__ spans the carrier space of the trivial representation
(0,0). The diagrams for these fundamental representations, together with the (10D) adjoint
representation are depicted in figure 1.
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Figure 1. Diagrams for the 5D (grey circles) and 4D (black points) fundamental representations
and the trivial representation (open circle).

Any other finite-dimensional irreducible representati@n /), with 11,1, € Z*, is
characterized by the highest weighty, u2) = l1A1 + A, The basis vectors of these
irreducible representations are denoted(®y [>)x, B), where

H|(1, e, B) = (a, B)|(1, )a, B)

for instance, the aforementioned highest weight vector is writté@$,) 1, 12). Although
the classification of finite-dimensional irreducible representations for the orthosymplectic
superalgebras is well known [15, 16], in the following we discuss some aspects of their explicit
construction (the infinite-dimensional unitary representations are considered in [17, 18]).

In order to build a finite-dimensional irreduciblep (1/4) representation, one starts from
one(ly, I7) so(3, 2) representation of highest weight1, 1), which will also be the highest
weight for the whole superalgebra, i.e. it is annihilated by the elemeni$:of

O++l(1, )1, m2) = Q+_|(l1, [2) 1, 2) =0 Ei|(l1, D) p1, p2) =0 (3.22)

withi = 1,...,4. The support space for the superalgebra representation is spanned by the
action of the elements @f~ on the highest weight. The generators so obtained can be displayed
as follows:

(X)"|(1, I a1, p2) (3.23)
(X)"Q—+[(l1, I pa, p2) (X)"Q——|(l1, )1, p2) (3.24)
(X)"(Q-+0-- — Q- 0-0)1, l2)pa, p2) nez" (3.25)

whereX e {F;}*_ ;. The first set of vectors (3.23) spans the original3, 2) representation
(11, I2), while those of (3.24) and (3.25) are inside the sp&8eb) ®(/1, I2) and(1, 0)R(l1, I2),
respectively.

We shall consider two relevant cases for our purposes, any other can be dealt with in the
same way:

(i) (I1,12) = (0,1). In this case we start with the 4D fundamental representation. The
vectors inside the tensor produ@@, 1)®(0,1) = (0, 2)®(1, 0)&(0, 0) obtained by
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(3.24) actually constitute the 1D trivial representation0). Indeed, the highest weight
vectors for the other two subrepresentations @e2)1,1) = Q.+|(0, l)%, %) and
1(1,0)1,0) = Q.-](0, 1)3, 1), respectively. But it is clear from (3.22), that both of
them must vanish.

The second subspace (3.25) @ 0)®(0,1) = (1, D®(0, 1) is just the initial one,

(0, 1), because thél, 1) highest weight(1, 1)3, 1) = (Q++ A 0+2)|(0, D)3, 3) here,

is obviously null by using (3.22). Therefore, the 5D vector space for the superalgebra
representation i${ = H.1) ® H.0, Which corresponds to the fundamental matrix
representation afsp(1/4).

(i) (1, 12) = (1, 0). Now, the starting point will be the second fundamental 5D representation
(1, 0). The first subspace (3.23) is the origiftgl, o) itself, while the second one (3.24) is
included in(1,0) ® (0, 1) = (1, 1) & (O, 1). But the representatiofi, 1) cannot appear
here for the same reasons as in (i). For the third subspace (3.25) we must take into account
the direct sum decompositiofi, 0) ® (1,0) = (2,0) & (0, 2) & (0, 0). However, as
before, one can show that the only representation allowed hédeQs. Let us elucidate
this last point with the help of the Wigner—Eckart theorem. We can write the action, in
the notation explained above, as

0+:A0+-1(1,01,0) = «|(2,0)2,0) + 5](0, 2)2,0) + |(0, 0)2, 0).

But the Ihs vanishes (again by (3.22)) as well as the last two terms of the rhs. This implies
a = 0. In order to know more about the remaining terms, let us consider the action

0+A0-+|(1,0)1,0) = B|(0,2)1, 1) + y|(0,0)1, 1).

With the help of (3.22) and the commutation rulesoep(1/4), we see that the lhs and
the last term of the rhs actually vanish, so that necessarity0. Finally, we can define

Q——/\Q—+|(17 0)17 O> = |(07 O)O’ O>
Thus, the 10D support space for the whole superalgebra representation is
H = (Hao @ Hoo) ® (Ho1) =Vo® V1. (3.26)

The explicit form of the 1610 matrices representing the basis elementasp{1/4) can

be obtained in a very straightforward way from the previous considerations. Nevertheless,
we afford the final expressions in a more covariant way by means of the metric tensor of
the (3 + 2)D real space underlyingo(3, 2), the symplectic metric of the spinor realization
sp(4, R) ~ so(3, 2) and a set of 44 y-matrices.

Let us start by changing thesp(1/4) Cartan basis of the previous section to another
one given by{K.g. Q,}, wherea, 8 = 0,1,...,4, anda = 1, ..., 4, in a similar way as
discussed in thesp(1/2) case. The even elememSg = —Kp, generate pseudo-rotations
in the (@, B)-plane of R® equipped with the metrig,s = diag(1, —1, —1, —1, 1). The points
of this space will be denoted by

x% =0 xt X% 13 xH = @, x, y) = @H, y) =@, x', y).
We frequently use the following convention in what follows: the indexgg for so(3, 2)
vectors run from 0 to 4; indexgs, v for Lorentzso(3, 1) four-vectors go from 0 to 3; indexes
i, j for pure Euclidean 3D space vectors takes values from 1 to 3; and finally, inalexésr
4D spinors run from 1 to 4.
Recall that forso(3, 2) we can define a set of matricgs, « = 0, .. ., 4, verifying

{Va’ Vﬁ} = 2ga/3- (327)
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Again, we can find a charge conjugation mattigatisfying

C=-C cct=cc=1 (3.28)
which realizes the equivalence
CyaC = 7,. (3.29)

In addition, it is possible to get a Majorana representation where alj,thee pure imaginary
matrices whileC is represented by a real matrix. For instance, we use the following explicit
Majorana realization

(0 —o _(—ioz O (0 o2
Yo = —02 0 n= 0 —iO’g v2= —02 0 (3 30)
_fio1 O _(—0o2 O c— 0 1 '
y3 = 0 iGl va = 0 02 - -1 0)°
The commutation rules afsp(1/4) can then be written as

[K/J.va Kp(f] = gupKva - g/J.O'KV,D + gvaKup - gvpKua

3.31
[Kotﬁ’ Qa] = Qb(S(xﬁ)ba {Qaa Qh} = (CSaﬂ)abKozﬁ ( )

where

Sap = —3[Va> vl (3.32)

and they may be taken in the above Majorana representation.
Now, the 10D matrix representation obtained before can be expressed in the form

My 0 % * % U,
Ka/s=< 0 0 =« > Qa=<ik * va). (3.33)
* ok Sy U, v, =«

The 5x5 matrix Mys of so(3, 2) has elements in thé&-row and in thee-column given by
(Mop)’c = —ghgpe + gh8ue- The 4x4 matrix Sy is defined according to (3.32). The

rectangular 54 (4x5) matrix U, (U,) have elements in the-row, b-column {-row, a-
column) determined by

U =1CYVap U = A Fa)as (3.34)
with Ak = % Finally, v, andd, are, respectively, 24 and 4x 1 matrices taking the form

(Wa)p = £Cap (a)p = 84 (3.35)

with ¢4 = —g. One can show, by direct checking, that the matrices (3.33) accomplish the
commutation rules (3.31). This representation has some properties that we comment upon the
following.

First, notice that the charge conjugati©rcan play the role of the symplectic metric, i.e.
§aﬁc +CSyp = 0 according to (3.29). So, we can define a<1@ supermetric matrix in the
form

K=@uydDh e k) =G J (3.36)

wherek is areal parameter. By constructins invariant under the action of the representation
(3.33) for the even generatoks,s. Moreover, it is also invariant under the action of the odd

generatorsQ,, if k, A, i, ¢, ¢ are chosen properly. In fact, the equation to be satisfied by the
charges is

(Q)"K -KQ, =0. (3.37)
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Taking into account the form (3.33) @,, equation (3.37) is transformed in two decoupled
equations:

ACYe — Ak7%4C =0 eC — tkC = 0. (3.38)

Once we fixk = 1, a particular solution for the first equationiis= —4 = '—2 and for the

second equation we can take- —{ = \/g By means of this choice we get a real Majorana

representation for the whole superalgetaa(1/4) which is realized as a subsuperalgebra of
osp(3,3/4).

4. Contractions of the (1 + 1)-AdS superalgebra

Given a Lie superalgebra generated{y} with super-commutators,
[Xi, X;le = ZijXk (4.1)
k

(+ stands for the anticommutators andor the commutators) we can define a contraction by
introducing a new ‘rescaled’ basis with the help of the contraction paramet¢ss = € X;},
so that the new generators obey

(X}, X))+ = Zeie_,-e,:lcij,’(. (4.2)
k

In the singular limit, when some of tke go to 0, the new super-commutators may have a well
defined limit originating a contracted Lie superalgebra.

An important fact is that the contraction procedure is not basis free, and according to the
pursued contracted algebra one must find a suitable basis. A systematic approach choosing
bases compatible with superalgebra gradings was realized by de Moetigh{3, 19]. For
our purposes, first we select the basis by physical or geometric considerations, which will also
afford the grading relevant in the process. Secondly, we will restrict ourselves to ‘continuous
contractions’.

In the same way we can define the contraction of matrix representations of a given
superalgebra. L€tM;} be the matrices representing the above superalgebra generators. We
can define, by means of a nonsingular even mafiridepending on the parametdes}, the
family of matrices

M;(€) = ¢ S.*M;S.. (4.3)
In the context of this paper, the initial matridéd; } belong to an orthosymplectic superalgebra
satisfying the equation

MK + (=)™ KM, =0 (4.4)
where the index: stands for the supertransposition, dlds the metric. The redefined
matricesM; (¢) will verify

M;(€)" K + (=1)*MOK M;(e) = 0 (4.5)
where

Ke = exSTKS, (4.6)
and ek is an additional normalization factor depending on the contraction parameters. If
in the limite; — 0 the set{M;(¢), K.} is well defined, we get a contraction of the matrix
representation superalgebra. However, the resulting matrices may not have an orthosymplectic
character since the metric matrfi&. could become degenerate after taking the limit. The
auxiliary contraction matrixS,, that can also be dealt with using the help of the grading
formalism of representations [19], is called the grading matrix. In our case it is determined by
appealing to physical considerations.
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4.1. The Poinca superalgebra as contraction of the AdS superalgebra

In order to obtain the Poincassuperalgebra as a contraction of the AdS one, it is necessary to
implement, to the odd sector, the well known contraction procedure of the even (Lie) sector
(see, for instance, [20, 21]). This is a nontrivial procedure as we see below.

4.1.1. Reflection grading of AdS superalgebrahe contraction from the (anti) de Sitter to
the Poincag Lie algebra is, from a geometric point of view, a contraction around a point. In
other words, the Minkowski space-time can be seen as a small neighbourhood of a pointin the
AdS space-time (for more details see [22]). The grading is supplied by an involution in the
AdS algebra generated by a reflection leaving such a point invariant. In the following, we must
implement this involution of the even sector to the whole superalgebra. The automorphism so
obtained provides &, grading on the superalgebra as we see below.

Let us settle the problem recalling some properties of the Lie algebras involved here.
The generators ofo(2, 1) act naturally on the ambient spaf&, whose points are denoted
by (¢, x,y) = (x% x%, x?), endowed with a certain metrig,, of signature(2,1). The
metric is specified taking into account that a contraction frer2, 1) to (1 + 1) Poincagé
gives rise to a flat Minkowski surface inside the ambient space parametrized by the first two
coordinatess, x) = (x2, x1). This means that for these two coordinates the metric tensor will
be (g;;) = diag(1, —1); therefore, the last (diagonal) componenggf must still be fixed. In
this respect,we have the following options:

(a) (guv) = diagd, —1, 1) andso(2, 1) can be interpreted as the AdS algebra.
(b) (guv) = diag(l, —1, —1) and we have, in facko(2, 1) as the de Sitter algebra.

As we mentioned before, both de Sitter algebras are isomorphic but their geometric and
physical properties are quite different as is the case, for example, of their behaviour under
contractions.

We shall consider a reflectiak, around the third axis of a cartesian coordinate system of
the AdS ambient space:

Ry (t,x,y) = (—t,—x, ). 4.7)
This reflection spans an involutiofi,,, on the even generators of pseudo-rotations
IT, : (Ko1, K20, K21) = (Ko1, —K20, —K21). (4.8)

The action ofl1, on the charge®), can be implemented taking into account that, according
to (3.20), they support the spinorial representatiosw@®, 1). Thus,IT, must be represented
by y» given by (3.16) up to a factor:

I, - (Q+, 0-) = (AQ+, =20 ). (4.9)

The consistency with the anticommutators (3.20) fixes +i.

We see that the grading efsp(1/2), corresponding to the reflectioR,, essentially
determined by the eigenvaluesIaf, is Z,4, not Z,, as one would expect from the even sector.
This Z, grading is particularly simple, since it is also compatible with that derived from the
Cartan basis (2.1). Similar considerations can be developed for the other refle&jard
R.. However, itis worth pointing out that, although the restrictions to the even sector commute,
the corresponding implementatioRis, IT, andIT, onosp(1/2) are no longer commutative.



5108 V Hussin et al

4.1.2. The (1 +1)-Poincdr superalgebra (i). According to the grading originated &y, the
assignment of the contraction parameterig §enerates the invariant subalgebra)

(Ko, K+, Q1) — (Ko, €K, €x04). (4.10)
We take a nontrivial option by choosirg. = /€, so that in the limitt — 0 we get the
Poincaé superalgebra given by

[Kow, Ki] = K4 [K+, K_]=0

[Kow Q+] = £3 04 [K+, 0+] =0 (4.11)

{0+, 0-}=0 {Q+, 01} = K4 [K+. O] =0.

Note that the only even generator keeping its spinorial charact&f;is
Finally, we express the commutation rules (4.11) using gamma matrices in the more
physical basis (see expressions (3.12)—(3.20))

[Ko1, K20] = K21 [Ko1, K21] = Koo [K21, K20] =0
[Ko1, Qu] = Qb(—%yo}/l)ba [K2i, Qu] =0 (4.12)
{Qar O} = (=3CY*YNar K i=0,1.

4.1.3. The natural representation of the Poingasuperalgebra. In order to find the
auxiliary contraction matriX,, it is convenient to know how the Minkowski space is obtained
starting from the ambient space. Thus, let us change the AdS metric in the ambient space
(guv = diag(1, —1, 1)) in the following way

gu (k) = diagk?, —k?, 1) keR (4.13)
so that the corresponding AdS homogeneous spaces are characterized by

k?x? — k?t? + y? = constant (4.14)
Then, after applying the limik — 0, the above surface turns into tlie + 1) Minkowski
space-time

y? = constant (4.15)

At the same time, in the whole 3D ambient space, the metric (4.13) comes into the degenerate
metricg,.,(0) = diag(0, 0, 1). However, ineach surfagé = constant, itis defined a surviving
nondegenerate metrig;;) = diag(1, —1), (i, j = 0, 1). With respect to the odd sector we
require that along this contraction process some generators ;¢ preserve their spinorial
behaviour. So, we propose changing the global metric (3.10) to the form

-k 0 0

* *
0 k¥ 0 « *
K. = 0 0 1 =« * (4.16)
* x % 0 n?

x % x —n° 0

where the parameteksandn depend or in a way determined later. This allows us to choose
the auxiliary contraction matrix of the vector spa¢e= Vo @ V1 in the form

Sy = diagk, k, 1,1, n). (4.17)
Therefore, the generators in the natural representation (3.13) transform as
Kby = S Ko1S. Kby = €S- Ko2S.

/ - _ 4.18
Kip = €S, K125, Q. = eS Q.S (4.16)
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A nontrivial limit whene — 0 is obtained for the values

k=c¢ n=+e. (4.19)
The contracted generator matrices are
0 1 0 =« * 0 0 1 % =%
1 0 0 = * 0 0 0 % =%
Kpn=K=]0 0 0 = * Koio=H=]0 0 0 % =«
* % % 1/2 0 * x x 0 O
* x x 0 —=1/2 * x % 0 O
0 0 0 % =«
0 0 1 % =%
Kn=P=]0 0 0 % =x (4.20)
* * x 0 O
* % x 0 O
* x x 1 0 * % x 0 -1
5 *x * x 10 N 0 1
0= % * x x 0 0 - * % x 0 O
0 0 -1 x =« 0 0 0 % =
0 0 0 % = 0 0 1 % =
The resulting charges can be expressed in terms of the gamma matrices as
( 0 B”) a=+ (4.21)
where
1 ; : 0 B=i
_(C l)ac =1
(Ba)ﬁc = «/i y '3 (Ca)COt = i('“ ) /3 _ 2 (422)
O ﬂ — 2 ﬁ V2 ac - .

Itis interesting to note that the expressions (4.22) for the contracted clay@as be obtained
directly from (3.19) by making, in agreement to the metric chagge = (1, -1,1) —
guv(k) = (k?, —k?, 1), the replacements

. 1 .
y; = ky; y' — zy’ Vo = Y2 C - kC i=01 (4.23)

and, afterwards, performing the liniit— O.

4.1.4. The (1+1) Poincdr superalgebra (ii). There are more solutions to the contraction
of the (1 + 1)-AdS superalgebra corresponding to thg grading. We briefly mention the
following nontrivial and nonsymmetric case by means of the assignment

(Ko, K+, 0+, Q) — (Ko, €Ky, €720., %20 ). (4.24)
Performing the limit — 0, we arrive at a second Poinéasuperalgebra
[Ko, Ki] = K4 [Ki+, K_]=0
[Ko. 0+] = +£30+ [Ks, Q4] =[K+, 0-]=0 [K-, 0+] = K+ (4.25)
{0+, 0-}={0-,0-}=0 {0+, 04} = K.
In the physical basis this is
[K,Pl=H [K,H]=P [P,H]=0
[K,Q:]1=%430.  [P,Q]=-[H Q=30 [P,Q]=[H.Q]=0
{0+, 0-}={0-,0-}=0 {Q+, Q+}=—-P —H.

(4.26)
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4.2. Galilei superalgebras as contractions of a Poirauperalgebra

Now, we present the contraction procedure from the Pomn@to the Galilei superalgebra.
Although Poincag (ii) superalgebrais a perfectly well defined superalgebra we do not consider
it for contraction, because we are interested in obtaining the most common superalgebras in
physics. However, the reader can easily obtain the contracted superalgebra of theeRijncar
superalgebra following the same procedure that we are going to describe in this section.

The contraction from Poinca(i) to the Galilei superalgebra shares, with the previous case,
a similar development. For the even part this is a line-like contraction, i.e. from the geometric
point of view the Galilei space-time corresponds to a neighbourhood of the Minkowski space
along the temporal-axis [22]. As for Poinéarmve see in the following, that we can find more
than one Galilei superalgebra. In other words, once the contraction of the even part is fixed, it
does not lead to a unique contraction of the odd sector.

4.2.1. Grading of the Poincér superalgebra. At the level of Lie algebras, choosing
{K, H, P} as the Poincar basis, the contraction to Galilei is fulfilled by using the inversion
I,

I, : (H,P,K) — (H,—P,-K) (4.27)
associated to a spatial inversi®nin the Minkowski space
R; : (t,x) — (¢, —x). (4.28)

Since the only generator of the previous ones which acts nontrivially on the charge sgace is
(see (4.12)), we have, in principle, two basic options to implerigran the odd sector:

@ M, =ayy2 (b I, =ay aeC. (4.29)
(a) As for the first possibility, the supercharge eigenvectofd,ofxyoy.Q" = AQ’) are
1
0= TZ(&HQ) (A1 = *ia)
05 = E(& —iQ-) (A2 = —ia).

In this new basigQ’, 0%}, the commutation rules for the Poinéasuperalgebra (4.12) are

(4.30)

[K,P]=H [K,H] =P [P,H] =0

[K,011=30; [K,05=307  [H Q=[P Q;,]=0 (4.31)
{01, 01} =105, 05} =P {01, 05} = —H.

The commutators (4.31) compel us to cho@se +1 and here we take = 1. This means that
the relevant grading is given b¥,. If we use the physical basis (4.11) for the commutation
rules with the new chargg®);, 05} it is necessary to replace the set of matripgs C} by

v, = Z’lyME, C’ = £Cx}, whereX is the matrix of the basis chang®, = Q,X,.
Explicitly, we have

Yo =02 Y1 =io3 Y2 =—01 C'=—y[=o0o. (4.32)

The Z, grading allows us to choose the following rescaled basis (we drop out the prime
of the charge generators since they will be used accordingly henceforth) leading to a nontrivial
contraction:

(H, P, K, Q1,Q2) — (H,eP,eK, /€01, /€0Q>). (4.33)
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(b) The second option gives the supercharge eigenvectats. of

1 1
Q) = B2t Ga=t) 0,= B0 Ge=-w. (439
The commutation rules for this new basis are
[K.0]=30, [K.Q)=301 [H.Q1]=[P.Q1,]=0 (4.35)

This implies that the eigenvalues (4.34) are real@ard +1. So, the grading associated with
the involutionIl, is Z,. Forinstance, one particular realizatiogfon the supercharge sector
whena = 1is:

I, 1 (Q1, Q3) — (01, — Q). (4.36)
In this new basigQ;, 05}, the corresponding set of matricgs,, C} remain in the Majorana
representation and are given by

Yo =03 Y, = —ioz y, = —01 C'=—-y/=ioy. (4.37)
The Z, grading leads to the following ‘natural’ contracting parameters (dropping the prime
on the charge generators)

(Hv P7 K’ Ql7 QZ)_> (H56P7EK7 QlaeQZ)' (4'38)

4.2.2. The Galilei superalgebra (i). We begin by the contraction obtained after specialization
of the contraction parameters (4.33) corresponding tazhgrading. In the limitt — 0 the
supercommutators read

[K.H] =P [K,P]=0 [H,P]=0 [K, Q. =0

{00 Qu} =0 {Qu, Qp} = (=Cy*yHr P

On the other hand, the natural matrix realization of the above superalgebra can be derived

from that of Poinca (4.20) using the auxiliary contraction matrix

S. = diag(L, €, 1, Ve, J/€). (4.40)
The effect of (4.40) on the Minkowski space-time meyigis to change it into a deformed
metricg;; (€),

gi; = diagl, —1) — g;;(e) = diag(l, —€?) (4.41)
which in the limite — O provides the corresponding one for the Galilei space-time
2ij(0) = diag(1,0). Making use of (4.40) and (4.33) in the matrix contraction (4.3), we
find

(4.39)

0 0 0 % =« 0 0 1 % =«
1 0 0 % = 0 0 0 % =%
K=]10 0 0 % = H=]0 0 0 x =«
* % x 0 O * x % 0 O
* x x 0 O * % x 0 0
0 0 0O x =«
0 0 1 x =«
P=|0 0 0 % =x (4.42)
* * x 0 0
* * x 0 0
* * x 0 0 * x x 0 O
* x % 1 i * x  ox 1 —i
Ql_iz***oo QZ_E***OO
410 0 -1 % « 410 0 -1 % =
0 0 i =x =x 0 0 —i =* =%
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The same results for the matrix realization of the supercharges can easily be obtained from
those of super Poincar(4.22) by using, in agreement with the metric contraction (4.41), the

rescaling recipe:

y— en yt— eyl Vi = Vi (W#D C — eC (4.43)

and then taking the limi¢ — O.

4.2.3. The Galilei superalgebra (ii). The second way to obtain a Galilei superalgebra comes
from the option (4.38) for the contracting parameters, which is relatedzzograding. Now,
the Galilei supercommutators are
[K,H] =P [K,P]=0 [H,P]=0 (K, 01] =30
{01, 01} =H {02, 02} =0 {01, 02} = P.

A (3 + )D extended version of this algebra has been considered in some nonrelativistic
supersymmetric field models [23]. The natural matrix representation is obtained with the help

of the auxiliary contraction matrix
Se =diag(l, €, 1,1, ¢). (4.45)
The final resulting matrices fdiK, P, H, Q1, Q»} are

2 (4.44)

0 0 0 % =% 0 0 1 % =%
1 0 0 % =% 0 0 0 % =«
K=]0 0 0 % =« H=]0 0 0 % =«
* % % 0 O * % % 0 O
***%O * x x 0 0
0O 0 0 x =«
0 0 1 x =«
P=]0 0 0 % =« (4.46)
* * x 0 0
* x x 0 O
* % % 1 0 * * % 0 O
* x x 0 1 * x x 1 0
Ql_iz***oo Q2=£2**>k00
410 0 -1 % « 410 0 0 * «
0 0 0 =x =« 0 0 -1 *x =«

It is interesting to note, that both the commutation rules and the natural realization of this
Galilei superalgebra can be obtained directly with the changes

-1 0 0 —¢2 0o -1
C — < 0 62> Y — (1 S ) yl—> <6_2 0) (4.47)

(the othery-matrices remain unchanged) and taking the limit> 0. In fact (4.47) gives
another inequivalent realization of the gamma matrices (besides (4.43)) corresponding to the

contraction metric (4.41).

4.3. General standard contraction pattern

As can be seen from the development of the previous sections, one cannot give general formulae
for all the contractions afsp(1/2) originating from commuting involutions of the even sector.

The problem of achieving such a general setting is twofold: (i) the implementation of the
involutions to the whole superalgebrais not unique, (i) these implementations do not commute
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anymore. Therefore, one cannot find a fixed basis to carry out all the contractions in the cases
presented here. In fact, it is necessary to change the basis in each contraction step in order to
derive all the solutions.

Despite these troubles, we can get a partial answer to our proposal if we restrict ourselves
to a class of contractions that will be referred to as the ‘standard’ contractions. They allow a
common basis for all the contraction steps and are essentially determined by the involutions
of the even sector.

Let us start with the supermettfic; of the natural realization afsp(1/2) given by (3.10).
As we saw before, one way to view the contractions is as a deformation of this initial metric
by means of some coefficients that, for our purposes, are chosen as follows

ef 0 0 * *
0 —efe% 0 * *
Ki(e)=] O 0 1 * * . (4.48)
* * * 0 €162
* * k —€1€2 0

The corresponding auxiliary contraction matrix is given by

S(e) = diag(e1, €162, 1, \/€1€2, \/€1€2). (4.49)
Due to the change of metric, thep(1/2) generators (3.12) are also affected by the involved
contraction coefficients in the following way
Ky = €2Km K3y = €1K20 K5 = €162K21 Q) = Je1€20x. (4.50)
Now, the initial super commutators (3.20) become
[Ko1, Kool = K3y [Kop, Koql = ngéo [K3o Kon] = EfKél
[K30, QL] = €10, (—372¥0)ba
(K}, QL] = €120}, (—3v27D)ba (4.51)
[K61 QL] = €20, (—3v0vD)ba
10}, 04} = e1(—=3CY "y Dan Koy + €2(=3CY?*¥ s Ko + (=3Cy*y N ap K.
The corresponding natural matrix realization of the superalgebra generators take the form

0 E% 0 * 0 0 1 =«
k=l 00 » | Ke=| oo -

oo 062501* *x xS (4.52)
Ky = 8 6525 é i Q;:<CO(; %ﬁ) a=+

% * *  €1€2501

where the submatrices,, were defined in (3.18), and
1

(B)Y. = 2= (Cy°) (B = —=(CrH (B,)% = e1e2—=(Cy?)
’ V2 R ’ RE (4.53)
(Cl)eo = 6172()70)(1(‘ (Cher = 61623()71)(” (Ce2 = 6172(172)ac-
The above expressions for the supercharges can be somewhat simplified by writing them as
1 1 -
B)! .= —=(C'y")ac Cea = —=¥'s)ac 4.54
(B,) ﬁ( a0 (C) ﬁ(y ) (4.54)
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where the new gamma and charge conjugation matrices are normalized according to the metric
change (4.48),

)’6 = €10 V{ = €1€2)0 J/é =
o 1 , 1 , 4.55
y?==y° pt= -yt C' = e16,C. (4.55)
€1 €1€2

Although some of the limits wheg¢y — 0 of the expressions (4.55) are not well defined, the
above terms appear conveniently mixed in the natural realization (4.54) avoiding any divergence
problem.

As far as the deformed metric does not change any sign of the initial metric signature (i.e.,
providede; > 0) we have well defined superalgebras even in the kmit> 0. For instance,
we can first consider; — 0, ¢, — 1 to get the(1 + 1) Poincae (i) superalgebra, and after
takee, — 0 to end with Galilei (i). But we can also begin with — 1,¢, — 0 to find a
(1 + 1) Newton—Hooke superalgebra to arrive at Galilei (i) following a different route.

However, changing the sign of the initial metric means that sgdaecome pure imaginary
complex humbers, and consequently our final superalgebra has complex structure constants.
If one wants to get real superalgebras associated with a different signature it is necessary to
start from the corresponding Majorana representation that in some cases, depending on the
dimension, must be doubled.

5. Contractions of the (3 + 1)-AdS superalgebra

We now address the contractionmsf (1/4) identified as thé€3+1)-AdS superalgebra. Aswas
discussed for the case ¢f + 1) dimensions, in the contraction to Poineawe must examine

the grading corresponding to the reflection aroundyfaxis, R,. This is implemented here

in the odd sector by, up to a factor. Hence, the odd sector basis adequate for the contraction
process is composed of eigenvectorggfthat is, by choosing a sort of ‘chiral’ representation
for they, matrices.

On the other hand, we are restricted to a Majorana representation in order to get real
structure constants. However, both conditions cannot be fulfilled at the same ti®e it
dimensions, so, if we want to keep the reality condition, then we are just led to the class of
‘standard’ contractions defined in the previous section. The other possibility, that will not
be discussed here, is to double the dimension of the odd sector. We shall also afford, in the
last section, a nonstandard (complex) contraction for a chiral representation since we find it
instructive.

The same problem of incompatibility of grading and reality appears when one tries to get
the Galilei superalgebra from the Poineame. Therefore, we display in the next section, the
general form of the standard contractions that include these two important superalgebras (here,
we do not give more general and compact formulae for all standard contractions, since itis out
of our present scope). Later we comment on particular details concerning the Bandar
Galilei superalgebras.
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5.1. Standard contractions

Here we translate the results of the standard contractions fot th# dimensions with some
slight and direct changes. The initial metric is given by the 10 matrix

1 0 0 x =«
0 —-I3 0 % =«
K=1]0 1 x = (5.1)
* ok ox 1 %
¥ % % x C

wherel; stands for the 3D unit matrix ar@dlis the charge in the Majorana representation. The
modified metric has the form

€2 0 0 x  *
0 —e2¢2I; 0 = *

Ke)=1] 0 0 1 =« * (5.2)
* * % T2 *
* * * % €6l

corresponding to the grading matrix

€1 0 0 =« *
0 e€el3 0 =% *

Se)=1]0 0 1 % * (5.3)
* * * T *
* * * kL Jerealy

wherezt is ane-dependent parameter not specified yet. The generators are affected by the
coefficientses, €, in the following way:

/ / / / /
Ky = €2Ko; Ko = €1K40 K;; = K;; Ky = e162Ky; 0, = vere20a.

Thus, according to these changes, the initial super commutators (3.31) come into

[Koi» Kaol = Ky, [Koi» Kyl = eng/lo [Kois K(/)j] = ngi/j (Ko Kl/j] = Kc/Jj
[Kz/w Kl/li] = EfK(/)i [Kz/w Ki/j] = Kz/lj [Ki/j’ K;k] = Ki/k
[Kio Q] = €10, (—3Y4Y0)a (KL O] = €1€20,(— 3va¥)ba (5.4)

(K5 QL] = €20, (—310¥)ba (K. Q)] = Qu(—=3¥i¥i)ba

(00 03} = e1(=3CY YKoy + €2(=3CY Y s Ko + (—3Cv YKy
+e162(—3Cy v K.

The natural 10x 10 matrix realizations corresponding to the above family of superalgebras

for the even generators take the form

0 ee; 0 % % 0 * % * =
e 0 0 % % w* Jij ok k%
Ky=10 0 0 % = Ki=1*x % 0 x x
* * x 0 * * % x 0 x
* * * % €250 * ok ox kxS
0O 0 1 x * 0 0 0 =« * (5.5)
0O 0 0 x * 0 0 e *
Kio=|—-€ 0 0 % x Ky=|0 €ee; 0 x %
* * % 0 * * * * 0 *
* ok ok ok €1840 * * *  x  €16284
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Here, e; denotes theth row vector of the canonicak® basis, andJ;; the so(3) matrix
generators. The odd sector is represented by

x* % U,
o, =1 * * v, a=1...,4 (5.6)
v, v, =

where
U = 1Y) ap UDpe =AGDar W)y =€Cly () =8 (5.7)

with Ak = 3, 00" = 3.
The new gamma and charge matrices are rescaled having in mind the metric change,

Yo = €1Y0 Y, = €162y, Y4 =74
1 1 5.8
y/O — —J/O J//l — J/l C = €162C. ( )
€1 €1€2

After substituting (5.8) in (5.7) we get well behaved expressions, even in thes]imit 0.

5.2. (3+1)-Poincaé superalgebra as contraction from the AdS superalgebra

Taking the limite; — 0 ande, — 1in (5.4) we have the Poindasuperalgebra commutation
rules (we omit the primes in the generators of the contracted superalgebra)

[K;un Kpo] = 8o Ko+ 8o Koo — 8uo Kip — 8up Ko
[Kuv’ Pp] = g,uva - gvau
[Kiws Qal = Op(=3Vu¥dba M #V (5.9)
[P;u Qa] =0
{Qur @b} = Cy")ar Pu
where we have adopted the usual conventi®yn= K,, for the translation generators of
Poincag, and we have redefined the charge conjugatigh=as/C.
In order to get a better understanding of the natural representation for this superalgebra

we begin with the contraction of the supercharges. The general expressigp Veas given
in (5.6). After contraction it becomes

1 0 o=
_(C M)ac =M A
We=1v2"" ’ U =1 2 (7 o« =4
0 ﬁ — 4 \/é ac
For the rowv, and columng, there are two basic options depending on the entof the
grading matrix:

(5.10)

() If Tt = Jeritleads us to

v, =0, =0. (5.11)
(i) If we chooser = 1 ort = ¢;, we get
Ve =0 Da)p = €84 or (Va)b = €Ca 9. = 0. (5.12)

Case (i) gives a matrix representation of the whole Poinsaperalgebra which is a direct
sum of an irreducible nontrivial 9D representation plus the trivial 1D representation. Case
(i) gives rise to a 10D reducible triangular representation (not completely reducible) that
includes (going to the quotient) the previous one. Hereafter, we shall restrict ourselves to the
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more elementary 9D irreducible representation that will be referred to as the ‘natural’ super
Poincage representation. Thus, the odd generators are represented by the 9D matrices

x U, _
Qa_<0a *> a=1...4 (5.13)
with U,, U, defined by (5.10). Finally, the even generators are schematically represented as
M[L\) * * 0 eL *
K,w:( * 0 = ) P :(0 0 *) (5.14)
* * Sy * x 0

where M, corresponds to the defining 4D matrix representation of the Lorentz algebra
s0(3,1), e, is a 4D column vector, and,, denotes theo(3, 1)-spinorial representation.
Let us mention that by means of an equivalence we can get iglinf(5.10) without affecting
(5.14):
e B
= ac =M
Ufe=1v2 " 1
0 =4 NZ
whereC is the same Poincarcharge conjugation that appears in the commutation rules (5.9).
This is actually the matrix form presented in Cornwell’s book [24].

0 o=

(0(1)0(1 = 1 S o =4 (515)

5.3. (3+1)-Galilei and Newton—Hooke superalgebras

The Galilei superalgebra can be obtained through the contraction 0,¢, — 0. The
standard Galilei generators are taken as folloyys= €;x Jjx (€;jx is the totally skewsymmetric
rank-three tensorX; = Ko;, H = K49, P; = K4;. This superalgebra is characterized by the
supercommutators
[J,J]=—-Jd [J,P]=-P [J,K]=-K
[K,H] =P [Ki,P;]=[P,H] =0 i,j=1273
[H, Q] =[P, Qa] =0 [J. Qu] = 0b(S)ba
{Q4, O} = CYar P;
where [A, B] = C stands for J;, B;] = uCi (i, j,k = 1,2,3), [A,B] = C for
[A;, B] =C; (i =1,2,3),andS; = ;5 are the spinor matrices. The natural representation
for the even generators is

(5.16)

0 0 0 =« 0 % % =x
e 0 0 =% ol x Jiox %
Ki = 0 0 0 =« Ji = * * 0 =%
* % % 0 ¥ x % S
0 0 1 x% 0 0 0 = (5.17)
0 0 0 =« 0 0 e =«
i = 0 0O *) i = 0 0 O *)
* *x x 0 * % *x 0
and the charges
* U, _
Qa_(ﬁa *> a=1...4 (5.18)
are given in terms of the submatrices
-1 5 . 0 a=
_(C l)ac =1 7
(Ua)ﬂc = \/E v ’3 (Ua)ca = 1 (519)

0 B =04 /2
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The (oscillating) Newton—Hooke superalgebra is obtained by taking 1 ande, — 0.

The corresponding commutators are
[J,J]=—-J [J,P]=—-P [J,K]=-K
[K,H]=P [Ki, Pj]=0 [H,P]=K
[7. Q] = 0s(Shha  [H. Qu] = Os(—3740)1a
{Qus Qv = (=CY°yDasKi + Cy an Pi-

The natural matrix realization is the same as for super Galilei except for the time translation

generator that is now represented by

(5.20)

0 0 1 =«
0 0 0 =«
H=|"1 0 o0 + | (5.21)

¥ % xSy

5.4. A nonstandard (3 + 1) Poincarsuperalgebra

Here we discuss a nonstandard contraction of the AdS superalgebra that gives aéPoincar
superalgebra having complex structure constants. In this respect we make use of a chiral
representation whese is diagonal and is also called the ‘modified chiral representation’ [24]:

_ 0 -0 o 0 —0;02
Yo = —op O vi= 0207 0
_ 1 0 _ [ 02 0
(o 4) o= (T %)

We can use a more compact notation with a set of four sigma matriggs= (I, o;),
o, = (I, —0;), sothat
_ 0 —0,02
Yu = (_UZEM 0 . (5.22)

With the help of the above expressions we can write the spinor representatiof8o2) as

rt 0 1/(0,0 0 1 0 0,02
Y _= [ ouoy = i
Suv = ( 0 F5U> 2 < 0 (GMG,,)’> Sau = 2 (—GZEM 0 ) ) (5.23)

Now, in order to implement the contraction we fix the grading of the supercharges
according to the eigenvalues pf:

04, (A =1, 2) corresponding to eigenvalue +1, it will be assigned grade 0
Oz, (A =1, 2), of eigenvalue-1 and grade 1.

Therefore, we have Z, grading with the following contraction parameters:

K — K, Ky — €Kay 04— 04 05— €04 (5.24)
The supercommutation rules obtained in the limit—~ 0 gives a nonstandard Poinéar
superalgebra:
[Kp.va Kp(r] = gvaKp.p + g/LpKva - gp.ervp - gupK/ur
[Kpvs Pol = 8upPv — 8up Pu
(K, Q4] = QB(FﬁU)BA [Kuw, Q7] = QE(Ffv)BA (5.25)
[P Qz1 =0 [Py, Qa] = Q5(—35020,)54
(07,05 =0 (04,05} =@ 3P {Qa 05} = (@I )apK,.



Kinematical superalgebras 5119

The natural matrix representation for this superalgebra can be derived by means of an
appropriate grading matrix, in agreement with the grading of the subspace of charges:

S(e) =diagle, el3, 1, 1, I, €15). (5.26)
Hence, for the even generators, we have

M, x =x
K= ( * 0 = ) P, = (
* * Sy

rt o 1/ 0 o0
S/l.v = ( 6 FR > S;/, = E <—O'QEM O) . (528)

v

*
% ) (5.27)

with

The supercharge matrices have the general structure shown in (5.6) and (5.7), but in this case
they andC’ matrices take a different form:

; 0 —ezaﬂaz (1 O
Y=\ —os5, 0 a=\o -1
, 0 —oto, , o2 0
wo__ —
Y= <—e‘2025“ 0 > ¢ = ( 0 —620'2> '

Substituting the above expressions in (5.6) and (5.7) we have well defined limitsewhed.

Finally, we want to comment, briefly, how in this framework the Poiacalgebra is
described by a faithful representation obtained as a contraction of the symplectic matrices
of sp(4, R). The corresponding representation matrices given in (5.28) leave the contracted
metric invariant

(5.29)

_ i02 0
C= < 0 0). (5.30)
The space-time points are put in correspondence with the 4D matrices
(t,x) =" > xty, tya=X (5.31)
with (puttinge = 0in (5.29))
0 0
Yu = (—025M 0) . (5.32)

Hence, the action of the Poinéageneratorsl € {S,,, S,,} given by (5.28) on the space-time
is

A X — [A, X], (5.33)
that comes from the group action
et X —» elxe X, (5.34)

This action, leads to the transformationgf* by means of the Lorentz representatidfi-/?.
A similar contraction would lead to the transformationwpt* underD /20,

6. Conclusions

In this work we have dealt with the problem of physical contractions of the AdS superalgebras
in (1+1) and(3+1) dimensions. By physical contractions we mean those including in the even
sector the well known contractions of the AdS Lie algebra originating kinematical algebras,
for example, the Poincarand Galilei Lie algebras. An interesting point is the nonuniqueness
of the solutions to the above problem, related to the existence of different gradings providing



5120 V Hussin et al

the contraction, and the importance that the dimension has in this respect. However, we have
been able to give a contraction formalism, referred to as the ‘standard contractions’, having

very general properties. We studied, in detail, the grading relevant in the process, how to get
the appropriate basis and the reality conditions characterizing our contractions.

Along the same lines, we also considered the contraction of the natural representations.
These are faithful matrix representations that play a similar role to the defining matrix
representations ofo(2, 1) andso(3, 2) which provide the ambient space for the AdS Lie
algebras i1 +1) and(3 + 1) dimensions. Such natural representations are readily built out of
the metric tensor and the class of gamma matrices associated with the corresponding algebra.
This list of properties is not accomplished, for instance, in the fundamental representations of
osp(1/2) orosp(1/4) (corresponding to both AdS superalgebras) because they cannot supply
us with faithful representations for all the kinematical contractions such as the Foawar
Galilei superalgebras.

There are several directions in which this investigation can be complemented. Immediate
work is in progress to enlarge this theory to the superalgebra extensions [25, 26] where we
expect new features especially(ih+ 1) dimensions.
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